電商的根本是個庫存計劃問題
電商可以說是“速度經濟”的代表:消費者不但期望批量經濟下的價格、大規(guī)模定制下的選擇,,而且希望鼠標一點,、幾個小時后就能送貨上門——“速度經濟”的速度。雖說不要店面,,但電商的種種成本,遠超一般人的想象,。很多傳統(tǒng)公司跨入電商,,例如美特斯邦威、紅星美凱龍,、飛虎樂購,,都是興沖沖而來,沒多久就倉皇撤退,,一大原因就是對電商的成本估計不足,。
而諸多成本中,一大塊就是庫存成本,。從本質上看,,電商是個庫存系統(tǒng)。從總庫到一級庫,、二級庫,,哪些商品該備貨、備在哪一級的庫,、備多少,,是個典型的多階段庫存計劃問題,。庫存計劃不到位,短缺與積壓并存,,結果是要的沒有,,不要的卻有一大堆。有些電商缺貨率動輒百分之二三十,,同時呆滯庫存比例高達百分之三四十,,由此而來的業(yè)務損失、庫存貶值,、削價清倉,,成本驚人。而這些問題的解決方案,,則離不開庫存決策的三部曲:預測,、計劃和補貨。
預測方面,,電商容易犯兩個錯誤,。其一是過度依賴銷售。雖說銷售最熟悉市場,,但他們的預測往往是拍腦袋居多,,準確率不高。一流的預測從數據開始,、由判斷結束:基于歷史銷售數據,,通過簡單的數學模型制定基準預測,,然后加入主觀判斷,,例如節(jié)日促銷、季節(jié)調整等,,做出人工調整,。強于判斷,弱于分析——由銷售主導預測的電商,,就如由工程師主導的備件計劃,,往往是高庫存下的高有貨率,雖說保障了銷售,,卻是以庫存為代價:一注銷或削價處理呆滯庫存,,這大半年就算白干了。
其二是預測方法單一,,缺乏預測準確性的閉環(huán)反饋,,預測質量得不到持續(xù)提高。雖說所有的預測都是錯的,,但錯多錯少還是大有區(qū)別,。電商產品眾多,,加上業(yè)務節(jié)奏太快,季節(jié)性,、周期性因素多,,公司時時處于救火狀態(tài),沒多少精力來鉆研預測的準確度問題,。有些預測模型明知不是最佳,,也沒時間、或沒興趣尋找更好的模型,。結果是預測一直在低水平徘徊,,只有教訓,沒有經驗,,不斷重復低水平錯誤,,也注定整體運營水平沒法提高。
計劃的核心是設立合理的安全庫存,,以應對需求和供貨上的不確定因素,。基于潛在的銷售盈利和庫存成本,,從概率統(tǒng)計角度可設定合適的庫存水位,,讓盈利的期望值最大化。這種概念放在單個商品上很抽象,,也可能很不準確;但成千上萬個產品放在一起,,總體結果的可預測性還是相當高。這就如賭場,,你可能在一個賭徒身上輸掉很多,,但在眾多賭徒身上,賭場的贏面總是更大,。電商就如賭場,,而贏面的大小取決于安全庫存的設置。
在管理粗放的電商,,安全庫存的設置要么是單憑經驗,,要么是方法單一,對于毛利率不同,、銷售特征不同的商品不能區(qū)別對待,。有些電商沒有概率統(tǒng)計的概念,以確定性的方法應對充滿不確定性的商業(yè)環(huán)境,,庫存計劃的水平就可想而知,,短缺、積壓就成了家常便飯。預測準確度低,、安全庫存設置不合理,,很多電商輸就輸在計劃上,雖說其執(zhí)行一年強過一年,,公司的運作水平卻不見提高,,年終一結算,扣除呆滯庫存,,虧多贏少,,原因就在這里。
一流的電商從預測開始,,由預測導入計劃,,最后是補貨執(zhí)行。二流的電商正好相反,,一頭撲在補貨執(zhí)行上,,結果是越執(zhí)行越忙,從上到下陷入活在當下的泥淖中不能自拔,。補貨執(zhí)行從把需求計劃轉換為供應計劃開始,。這里的關鍵參數是補貨周期,放在采購上就是采購前置期,,以及補貨頻率,。這些參數隨著業(yè)務環(huán)境和公司的執(zhí)行力改變而改變。例如淡季的補貨速度快,,旺季的補貨周期長,,相應地,補貨周期和頻率也應做適當調整,。在有些電商,,這些參數一經設定,就再也不會調整,。有些參數明知不準確,,還是聽之任之。這些參數決定了供應計劃的準確度和可執(zhí)行性,。不加調整,注定供應計劃就不準確,,需要在補貨執(zhí)行中花更多的精力來彌補,。所以,看似執(zhí)行的問題,,其實還是個計劃問題,。
補貨執(zhí)行的另一個關鍵是供應商和物流商的管理,因為他們是補貨任務的具體執(zhí)行者。電商產品開發(fā)周期短,、時效性強,,留給戰(zhàn)略尋源的時間很少,給選擇合適的供應商帶來挑戰(zhàn),,為日后的供應商績效埋下隱患;電商的產品種類繁多,,決定了供應商眾多,如何有區(qū)別地管理供應商績效也是個大挑戰(zhàn),。限于篇幅,,這里不予詳述。
相關新聞:
0條評論
網友評論